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ABSTRACT

Nickel cathodes that produced excess enthalpy during the electrolysis of light water-solutions were examined
serveral weeks later (metachronously) by electron emission spectroscopy. The absenceof an obvious significant
emitting ash might be consistent with a short-lived product, loss of the product; self-absorption, or low signal
to noise, or a new fusion pathway lcading to a stable ash. The latter may Centribute to the excess heat as well
as other researchers’ reported transmutation reactions through a portion:ofthe pathway leading to the production
of de novo deuterons. If deuterium is a product of these reactions themvits production levels, the inevitable
separation factors, and present detection thresholds pose a significant challenge for its unambiguous
identification.

INTRODUCTION -- EXPLANATIONS NEEDED

The deuteron is rarely, if ever, considered a possiblesproduct of cold fusion systems. Although examination of
a large subset of the cold fusion literature (=840 abstracts [1]) revealed eighteen papers concerning tritium or
triton production [2-19], a similar scarch/revealed none discussing deuterium or deuteron production. This
absence cxists eventhough a pathway to itsiproduction might also explain the excess heat [20-27] and reported
transmutations [3,25,26,28-30]. There must be a reasonable explanation for the excess heat and transmutation
reactions. In light water nickel cold fusion systems, even purported transmutated products do not appear to be
proportional to the expeeted ash required for the observed excess enthalpy. The anomalous branching ratio
remains as problematic as the exeess heat, and the lack of a theoretical model has been a major cause of the knee-
jerk dismissal of this scientific field.

The coulomb barrier approach has been examined by many hypotheses but screening factors alone may not be
sufficient to explain the observations, and thus the reaction pathway probably does not involve the classic
collision of two particles. Several hypotheses exist including "shrunken" hydrogen | 20], positron emission [31],
and possible deuteron production [2]. In the case of helium produced from deuterium-loaded palladium, the
Phusontheory [33] has been developed describing the multi-body reactions involving the loaded deuterons within
the lattice of the fully loaded Group VIII transition metal electrode cathodically driven to ~1 kilomolar electron
density. Inthe Phuson theory, the phonon clusters distribute energy between the excited state and the ground
state, thereby conserving momentum within the palladium.

Because there does not exist a similar theory for nickel, due to the excess heat observed and the lack of a clear
clectron emission in these metachronous experiments, we clected to look more closely at deuterium, its
production, its spin structure, and its possible role in these phenomena. This paper introduces a pathway that
could vield de novo deuterons and explain the observed transmutation reactions. The hypothesis suggests that
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energy may be transferred to the lattice through a phonon cloud (Phuson) as a non-bound virtual deuteron state
collapses to the ground state configuration.

BACKGROUND -- DEUTERON STRUCTURE AND SEPARATION

Chemically, the hydrogen isotopes slightly differ in their equilibrium constants, enabling the difficult separation
of deuterium oxide from ordinary water (Table 1). Although hydrogen was isolated as a distinct substance in
1766 by Cavendish, deuterium was separated electrolytically in 1932 by Urey, Brickwedde and Murphy after
its spectroscopic identification one year earlier. The actual situation is complicated because of tritium and the
fractional species (e.g., DTO). The fragile deuteron decomposes at temperatures cooler than our sun's core (~
million degrees Kelvin). So even though interstellar clouds and protostars contain deuterium (abundance ID/H
=~1.9 {+/-0.5} 10") evolved stars have essentially none [34-36]. Therefore, deuterium oxide (D,0), although
ubiquitous (D/II = ~1.5 10"} in sifu within ordinary water, must be commerciallyrefined and purified at
considerable difficulty to obtain the several megaliters per year required for ifs ise-as a moderator for some
nuclear reactors. The difficulty in refining deuterium arises for several reasons. The separation of the deuterium
is highly endothermic, and most of the separation factors are small (Fig: 1). Deuterium is generally refined
clectrolytically following cascaded refiners using the slight difference in the free energies of formation of
different hydrogen, nitrogen, or sulfer compounds (e.g., ammonia-hydrogen exchange and the Girdler-Sulfide
system) [37].

In a deuteron, the constituent neutron and proton have an eXeeptionally large internucleon separation. The
importance is the deuteron binding energy 1s only ~2.2 MeV in a well of about ~40-50 MeV. As a corollary, the
deuteron has nobound excited states [38,39]. Since each nucleon has isospin +1/2, the deuteron has total isospin
of cither 0 or 1, and so there are four possible triplet.and singlet states [40]. The deuteron ground nuclear state
is the triplet*S, state with the nuclear orbital angularmomentum= 0, and the nuclear spins parallel. States with
any nuclear orbital angular momentum of >0 shew no signs of binding. The actual structure, and encrgy, of the
deuteron ground state results from its three form factors (clectric monopole {charge}, magnetic dipole, and
electric quadrupole moments). The magnetic moment of the deuteron (Lp = 0.8574) is not exactly the sum of
its component parts (W, and (L), and the slight difference - and the unusual electric quadrupole moment (Q =
0.282 e-fm?) -- are both consistentwith a more complex mixture of nuclear spin states in the deuteron ground
state (suggested by Rarita and Schwinger) such as inclusion of some °D, state [41,42]. There is a virtual (*S;)
state located above the zero'hinding energy at +30 keV which has been confirmed by nuclear photoeffects and
other phenomena [43].

EXPERIMENTAL - ABSENCE OF METACHRONOUS BETA EMISSION

Nickel cathodes produce excess enthalpy (heat) during electrolysis of light water solutions [27]. As a result of
competing reactions [44-46], an optimum "notch” occurs in the power gain curve relative to input power [27].
Nickel electrodes were driven within their T -notch using ordinary water in combination with either platinum or
gold anodes. We examined several electrodes that had demonstrated episodes of excess heat for their
metachronous electron emission, at 12 to 24 weeks, using a modified Maestro-EEG system with solid state
detector. Fig. 2 shows the control, the background, and the background subtracted from the sample’s emission
spectrum. There was apparently insignificant metachronous electron or ionizing radiation emission from the
previously-driven nickel cathodes to herald an explanation for the excess enthalpy. The absence of an obvious
emission signatureto declare ash might be consistent with a short-lived product, or with inadvertant removal of
the isotope from the surface during the interval between driving and examination of the samples, or with
unintentional self-absorption of the emission signal, or with loss of the signal in the noise background, or even
with anunconsidered pathway yiclding a stable final product. Given the recent results of Lin [47] and Bockris,
and Mizuno, it may be that the delay of several months prior to the metachronous measurement was far too long
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and that emissons may have been in the range of 15-25 keV. Studies are underway to reexamine this
experimentally. Nonetheless, we considered the latter possibility.

INTERPRETATION -- POSSIBLE PATHWAY

When the possible pathway mentioned aboveis considered, it is noted that it might contribute to the excess heat
and to other rescarchers' reported transmutation reactions, through the production of de nove deuterons. We
suggest amultistep pathway leading to deuteron production with the generation of an excited intermediate state
(a virtual deuteron in light water with nickel, and -- as presented elsewhere -- an excited helium-4 nucleus in
heavy water with palladium systems). Fig. 3 shows some of the relevant nuclear states.

The first step is the corollary of well-known neutron decomposition. Free neutrons have a theoretical lifetime
of ~10 minutes but are observed to decay within circa three minutes via interaction with a proton. Taking the
neutron lifetime as 918 seconds, we rewrite the basic betadecay equation, using backwards time, to give a proton
and electron opportunity to react to anextremely rare occurance in a fully loaded,; one kilomolar electron-loaded,
fully-hydrided alloy. This gives a thermal neutron and neutrino.

pr+e »n+v

Could there actually be sufficient quantities of such putative ephemeral thermal neutrons available? Of the
estimated 5 x 10 nickel atoms in the cathode, perhaps.the telatively active portion may extend to a depth
yielding ~0.04% of the nickel lattice sites which actually are«able to have arole and contribute. This constitutes
about ~4 micromoles of nickel contributing lattice sites within the cathode. Thus, assuming full local
hydridation, the amount of protons available i$ also in the range of 2 x 10", Given the neutron lifetime, there
is a statistical likelihood of only 0.000987 contributing at any point ineach second. With the putative active sites
available, this would give ~2 x 10" potential ¥irtual neutrons per second. This does exceed the required event
rate described below.

The second step, similar to_the “Phuson mechanism proposed for deuteron-laden palladium, involves a
hypothesized intermediatéprecursor-product excited state. Here, the critical excited (and virtual) nuclear state
(D7) is energetically docated above the non-bonding axis. The ground-state deuteron forms through a
simultaneous cooperative reaction involving a cluster of phonons (the Phuson) linking the de-excitation of the
excited virtual deuteronstate. These phonons are critical because they account for the coupling, for the focusing
of energy into the critical sites, and possibly even for the positive feedback that permits the reactions.

The D" deexcitation enables the vicinal phonon ensemble to compete effectively and permit fusion reactions to
proceed in the fully loaded metals with energy transfer to the phonon cloud. If such nuclear-phonon cloud
pathway was not available then the tiny population of D* would saturate and end all such reactions. Only in the
fully loaded material are the virtual levels continuously drainedleading to their replenishment. When nuclear-
phonon cloudpathways are not available then the tiny population of D" immediately saturates to an insignificant
level.

Our calculations suggest that in order to conserve momentum and energy not all the ~2.2 MeV binding energy
would be available. The four-vector relates the momenta (p;; 1 =x,¥,2z) and energy (E), and begins in the center
of mass frame-of-reference at the primary reaction site within the hydrided metal. Although several
approximations have been made, the energy of the reaction actually available to the Phuson cluster appears to
be closerto 1.4 MeV per transition; somewhat less than the binding energy. Because cach watt requires ~6.24
102 MeV per second, one impact of this correction is that this putative pathway wouldrequire 2.8-4.510? events
per second (Fig. 4).
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Assuming a distribution of phonon energies in the range of 30-50 eV, there would be 2.8-7.3 x 107 phonons in
the phuson cluster (the cooperative phonon group linked to the excited state). Thus, this would require the
involvement of about 5-44 million lattice sites, and therefore about -~170-3501attice sites in any direction radial
from the prime reaction site. Now, any putative deuteron production releases energy on the ~1-2 MeV scale at
a single location, but with a possibility for spreading the relcased energy among these lattice sites that can be
coupled during the deexcitation time of D', The interaction radius [rpg] is determined by the speed of light, ¢,
so the number of lattice cells involved in a single event, coupled through the Phuson decxcitation pathway,
assuming isotropicity, is

[ * 1ol

Nises(rpe) =
[vunncalf]

The uncertainty principle can estimate the lifetime based uponthe "energy bandwidth” of the energy involved.
For the excited state of deuterium located at +30 keV, the encrgy width of the virtual state must be on the order
of afraction of that, which would be consistent with an adequate lifetime of the cxcited state. The ensemble of
phonons, with consideration of the available lattice sites, is thus sufficient to:account for energy transfer to the

lattice during the deexcitation D" .
LIMITS OF DEUTERON DETECTION

Several experiments are suggested based upon the Phusen theory. First, if deuterium is an ash, and if there are
no secondary reactions (¢.g., to convert the generated deuteritmto helium-4), then there will be an ultimate limit
to the amount of energy which can be obtained by loading nickel with a fixed volume of light water. Per mole
of hydrogen converted (in ~9 cubic centimeters of ordinary water) this would theoretically generate a maximum
energy of ~10" joules. Second, if the putative thermal neutron production does occur, then there is a maximum
excess rate of heat production available based upon that factor, too. This would limit the rate of generation of
the desired product. The observed T-notches could be consistent with this.

Third, the rate of generation of de nove deuterium per megajoule, if any, is miniscule and would create only a
few percentage change in a background of ordinary water (Fig. 4). Such small production levels, and the
inevitable separation factors (Fig. 1) refining further possibly already present deuterium, together pose significant
challenges for the unambiguous identification of deuterium. Reexamination of vibrational spectroscopic data
[48] (Fig. 5) indicates that small amounts of deuteron production remain below the present selectivity and
sensitivity ofthe system. However, other spectroscopies that may offer potential for i# situ examination include
infrared absorption analysis, neutron reflectometry and, nuclearresonance broadening (NRB) and elastic-recoil-
detection-analytic (ERDA) techniques. Some techniques penetrate subsurface structures to examine the magnetic
properties of, and the impact of nonequivalent occupied sites within, the hydrided metal.

Fourth, if Phusons are involved, then given the requirement for sufficient lattice recruitment, any observed
isotopic changes in transmutation systems may occurin greatest amounts below the lattice surface, and at depths
which are the order ofthe interaction radius. Fifth, if the putative thermal neutron pathway exists, then there may
also be the potential for nickel (and other elements) to be transmutated to higher isotopes of the same clement
with the unstable isotopes becoming, for the nickel, the stable isotopes of copper and cobalt.
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Thiz Figure shows the separation factors forrefining deuterium from ordinary water. The values range froma masimom for
electrolyais to those walues characteristic of swaporation or centri fiugation.
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Table I

HYDROGEN ISOTOPE PROPERTIES (ref. 49)

Baryon/Nucleon Proton Deuteron Triton
Mass (amu) 1.0078 2.0142 3.01860
Electric monopole charge 1+ 1+ 1+
Magnetic dipole moment 2.7928 0.8574 29789
Electric quadrupole moment (nuclear magnetons) 0 0.282 e-fm? 0
Isospin (parity) J 1/2+ 1+ 1/2+
Binding energy 0 2.224 MeV 6.461 MeV
Lifetime stable stable, fragile 12.3y

Decomposition product

not applicable

not applicable

18.59 keV beta

Diatomic gas Hydrogen Deuterium Tritium
Molar volume of solid em’ 28.3 23%
Triple Point (deg K) 13.92 K-13.96 K 1868 K-18.72 K 206 K
Heat of vaporization at triple point  Joules/mole 910.9 1268.2
Melting point {(deg K) 13.95 18.65
Boiling point (deg K) 20.38-20.4 235
Latent heat of fusion (melt) Joules/mole 1142 197 - 217
Heat of dissociation KJoules/mole 437.5 439.2
Water (ignores HDO, HTO, etc.) H.O D.O T,0
Background concentration 1 0.000156 17107
Molecular weight (C'? scale) 18.015 20.028
Surface tension (20C) 72.75 dynes/cm 67.8 dynes/cm
Temperature of Maximum density 3.98C 11.23-116C
Dielectric constant (25 C) 78.54 78.25
Absolute viscosity (20 C) 10.09 millipoises 12.6 millipoises
Melting point (deg C) 0 3.82
Boiling point (deg C) 100.00 101.42
Specific gravity (20 deg C) 0.9982 1.106
Heat of fusion Joules/mole 6008.2 6317.8
Heat of vaporization Joules/mole 43,840 44 936
Solubility NaCl (25 C) gms/100 g 35.9 30.9
Autopyrolysis constant [D,O+] {OH-] 25 C 1.00 10 3.00 10"
pH 7.00 7.26
Cost rain, snow 13/L(gas) ~ $30 Kigm
$100 - $1000/L (lig)
World production - ~1-3 10° Liyear < 10% Cifyr

World capacity

10'% tons on surface
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Fig. 3. Metachronous Emission of Nickel Cathodes

This Figure shows Emission Spectrograms of a control, of the background, and of a nickel cathode which had previously
demonstrated excess heat (~52 kilojoules, 0.35 cm®, 28 cm?, 15 weeks prior to examination).
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shows detected emitted ionizing radiation as a function
of energy from about ~5 keV to 1.5 MeV. Several
representative peaks, including the two characteristic
cobalt-60 megavoltage y-emissions, are laheled.

B) Background of laboratory, free of additional
sources, as 4 control prior to the addition of excess
enthalpic sampie.

C) Metachroncus Emission Spectrum of nickel
electrode previousty demonstrating excess enthalpy
(obtained by a comection involving a stripping
removal of the background (B) ).
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Fig. 3. Spin Manifolds of the Deuteron

This Figure shows the pathway leading to possible deuterium production. Tt does not include the preceeding generation of
the neutron as discussed in the text “Shown are three of the “states™ available to an interacting proton and neutron. The
vertical axis is energy and is not quantitative. If there is any nuclear orbital angular momentum then the non-binding “state”
on the upper left 1s not achieved for'teasons discussed 1n the text. If the nuclear orbital angular momentum 1s zero, the
manifold on the right can be entered. The singlet state above the axis (30 ke'V) 15 a virtual state observed m incident beam
studies. The state on the bottom right is the well-known ground state of the deuteron, which is mainly a °S, state. The
hypothesis 1s that there may be leakage from the virtual state to the ground state with Phuson coupling to the solid hydrided
lattice cathodically loaded with electrons.
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Deuteron Levels and Potential Deuteron Production
[lgnores separation factor, contamination, other losses]
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Fig. 4 Putative Production Rates of Deuterium Would Present Detection Challenges

This Figure shows the quantity of deuterium presentin, or generated de novo in, water as a function of excess energy. The
three rising curves show the amount of expected deuteron ash which would be produced ifthat reaction did occur and did
only account for the observed excess heat. Each curve represents a different derived energy for each single event nuclear
reaction. The event (binding) energy of 21 MeV does not hold for deuterium, but is representative of what occurs for other
final states such as helium. Qg of 2.3 iz what might be expected for the binding energy of the deuteron. The curve
representing “Q¢” of 1.4 (thick diagonal line) is derived from the calculations which correct for momentum transfer to the
Phuson cluster {see text). Also shown for comparison is the quantity of deuterons contained in a liter of light, and heavy,
water.
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Fig. 5. Vibration Spectroscopy of Nickel Cathode

This figure shows a Vibration Spectrogram of a loaded nickel eathode. The cathode (Sample 92-505b/Ni-B32)
surrounded with 20 ml of erdinary. watér, during its electrical polarization with a platinum anode, is struck with a single
mechanical pulse at t =0. The vibrational modes of the electrode, and their damping, can be used to determine loading,
but because of separation issues may be insensitive to any putative deuteron production. Two recorders were used to
pickup the data (lop and inset}, and the fast fourier transform is also shown as a frequency versus time plot. The solid
bar three-quarters of the way up the calibration signal at 17,390">'". The lowest evanescent normal mode, the most
irregular of the group. is believed to be a circular mode around the relatively large annular electrode. The sampling rale
was ~100 kllertz,
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